求具有11,390,625个变量组合的函数的最小值
我正在编写一个代码来解决管道数量的直径大小的最佳组合。目标函数是求出6条管道压降之和最小。
由于我有15个离散直径大小的选择,它们是2,4,6,8,12,16,20,24,30,36,40,42,50,60,80,可以用于系统中六个管道中的任何一个,因此可能的解决方案列表变为15^6,等于11,390,625
为了解决这个问题,我使用了使用纸浆包的混合整数线性规划。我能够找到相同直径组合的解决方案(例如2,2,2,2,2或4,4,4,4,4,4),但我需要的是通过所有组合(例如2,4,2,2,4,2或4,2,4,2,4,2 )找到最小值。我试图这样做,但这个过程需要很长时间才能完成所有组合。有没有更快的方法来做这件事?
请注意,我无法计算每条管道的压降,因为直径的选择将影响系统的总压降。因此,在任何时候,我都需要计算系统中每种组合的压降。
我还需要限制问题,使流水线区域的速率/横截面> 2。
非常感谢您的帮助。
我的代码的第一次尝试如下:
from pulp import *
import random
import itertools
import numpy
rate = 5000
numberOfPipelines = 15
def pressure(diameter):
diameterList = numpy.tile(diameter,numberOfPipelines)
pressure = 0.0
for pipeline in range(numberOfPipelines):
pressure += rate/diameterList[pipeline]
return pressure
diameterList = [2,4,6,8,12,16,20,24,30,36,40,42,50,60,80]
pipelineIds = range(0,numberOfPipelines)
pipelinePressures = {}
for diameter in diameterList:
pressures = []
for pipeline in range(numberOfPipelines):
pressures.append(pressure(diameter))
pressureList = dict(zip(pipelineIds,pressures))
pipelinePressures[diameter] = pressureList
print 'pipepressure', pipelinePressures
prob = LpProblem("Warehouse Allocation",LpMinimize)
use_diameter = LpVariable.dicts("UseDiameter", diameterList, cat=LpBinary)
use_pipeline = LpVariable.dicts("UsePipeline", [(i,j) for i in pipelineIds for j in diameterList], cat = LpBinary)
## Objective Function:
prob += lpSum(pipelinePressures[j][i] * use_pipeline[(i,j)] for i in pipelineIds for j in diameterList)
## At least each pipeline must be connected to a diameter:
for i in pipelineIds:
prob += lpSum(use_pipeline[(i,j)] for j in diameterList) ==1
## The diameter is activiated if at least one pipelines is assigned to it:
for j in diameterList:
for i in pipelineIds:
prob += use_diameter[j] >= lpSum(use_pipeline[(i,j)])
## run the solution
prob.solve()
print("Status:", LpStatus[prob.status])
for i in diameterList:
if use_diameter[i].varValue> pressureTest:
print("Diameter Size",i)
for v in prob.variables():
print(v.name,"=",v.varValue)
这就是我为组合部分所做的,这花了很长时间。
xList = np.array(list(itertools.product(diameterList,repeat = numberOfPipelines)))
print len(xList)
for combination in xList:
pressures = []
for pipeline in range(numberOfPipelines):
pressures.append(pressure(combination))
pressureList = dict(zip(pipelineIds,pressures))
pipelinePressures[combination] = pressureList
print 'pipelinePressures',pipelinePressures
转载请注明出处:http://www.hjsszs.com/article/20230526/2239630.html